Dopaminergic Neurotoxicants Cause Biphasic Inhibition of Purinergic Calcium Signaling in Astrocytes

نویسندگان

  • Karin M. Streifel
  • Albert L. Gonzales
  • Briana De Miranda
  • Rola Mouneimne
  • Scott Earley
  • Ronald Tjalkens
چکیده

Dopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes. To test this, we examined the capacity of two dopaminergic neurotoxicants to alter ATP-dependent Ca2+ waves and transients in primary murine striatal astrocytes: MPP+, the active metabolite of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hydroxydopamine (6-OHDA). Both compounds acutely decreased ATP-induced Ca2+ transients and waves in astrocytes and blocked OAG-induced Ca2+ influx at micromolar concentrations, suggesting the transient receptor potential channel, TRPC3, as an acute target. MPP+ inhibited 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ca2+ transients similarly to the TRPC3 antagonist, pyrazole-3, whereas 6-OHDA only partly suppressed OAG-induced transients. RNAi directed against TRPC3 inhibited the ATP-induced transient as well as entry of extracellular Ca2+, which was augmented by MPP+. Whole-cell patch clamp experiments in primary astrocytes and TRPC3-overexpressing cells demonstrated that acute application of MPP+ completely blocked OAG-induced TRPC3 currents, whereas 6-OHDA only partially inhibited OAG currents. These findings indicate that MPP+ and 6-OHDA inhibit ATP-induced Ca2+ signals in astrocytes in part by interfering with purinergic receptor mediated activation of TRPC3, suggesting a novel pathway in glia that could contribute to neurotoxic injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway.

Activation of ATP/P2Y purinergic receptors stimulates proliferation of astrocytes, but the mitogenic signaling pathway linked to these G-protein-coupled receptors is unknown. We have investigated the role of extracellular signal-regulated protein kinase (ERK) in P2Y receptor-stimulated mitogenic signaling as well as the pathway that couples P2Y receptors to ERK. Downregulation of protein kinase...

متن کامل

Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling.

We have studied the role of actin fiber assembly on calcium signaling in astrocytes. We found that (1) after astrocytes have been placed in culture, it takes several hours for organization of the definitive actin cytoskeleton. Actin organization and the number of cells engaged in calcium signaling increased in parallel. (2) Disruption of the actin cytoskeleton attenuated the calcium wave propag...

متن کامل

Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity.

Results presented in this study indicate that a large subpopulation (approximately 65%) of hippocampal astrocytes in situ exhibit calcium oscillations in the absence of neuronal activity. Further, the spontaneous oscillations observed within individual hippocampal astrocytes generally developed asynchronously throughout the astrocyte's fine processes and occasionally spread through a portion of...

متن کامل

Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors.

Gliosis is characterized by hypertrophic and hyperplastic responses of astrocytes to brain injury. To determine whether injury of astrocytes produced by an in vitro model of brain trauma activates extracellular signal-regulated protein kinase (ERK), a key regulator of cellular proliferation and differentiation, astrocytes cultured on deformable SILASTIC membranes were subjected to rapid, revers...

متن کامل

Basal Synaptic Transmission: Astrocytes Rule!

In this issue, Panatier et al. (2011) show that astrocytes detect synaptic activity induced by single action potentials and upregulate basal synaptic transmission through calcium-dependent mechanisms and purinergic signaling. These results demonstrate the relevance of astrocyte calcium in neurophysiology and confirm that astrocytes are actively involved in synaptic function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014